Gud har skapat de naturliga talen. Resten är människans verk.

-Leopold Kronecker

Välkommen till Matteguiden!
Här förklaras gymnasiematten utan vrickade härledningar och bevis, som oftast bara krånglar till det hela ännu mer. Duger inte förklaringarna på sidan så kika gärna in i forumet där du både kan bli hjälpt och hjälpa andra.

Matte 1 - Sannolikhetslära


Relativ frekvens

Relativ frekvens

Den relativa frekvensen är antalet utfall dividerat med antalet försök. Ju fler försök som görs desto mer kommer den relativa frekvensen att stabilisera sig kring ett visst tal för ett utfall. Detta tal kallas sannolikheten för utfallet.

Som ett exempel på de relativa frekvensernas stabilitet kan vi ta befolkningsstatistiken med antalet pojkfödslar. Statistiken visar att kvoten (=den relativa frekvensen) mellan antalet födda pojkar och antalet födda barn varierar mycket lite mellan varje år. Då det är en så pass liten skillnad så kan man tolka denna kvot som ett närmevärde för sannolikheten för pojkfödsel.

Genom att upprepa slumpförsök kan man bara få ett närmevärde till sannolikheten för ett utfall, men det värdet blir bättre och bättre ju fler upprepningar man gör.

Sannolikheten betecknas ofta med P som står för probability, vilket betyder just sannolikhet. Om man vill skriva sannolikheten för att man ska få krona vid en slantsingling skrivs då:
P(krona)
Har man fler alternativ t.ex. sannolikheten för att en match slutar oavgjort eller med bortaseger blir:
P(x eller 2)

P(krona) och P(x eller 2) är båda olika sannolikheter för varsin händelse. En händelse består alltså av ett eller flera utfall.

Sannolikheten för en händelse är summan av sannolikheterna för de olika utfallen i händelsen.Summan av sannolikheterna för de olika utfallen i ett försök är alltid 1.

Då man ska beräkna sannolikheten för en händelse med 2 eller fler utfall så adderar man de olika sannolikheterna för respektive utfall med varandra. Ta t.ex. P(x eller 2) här ovan. Om sannolikheten för x var 0,3 och sannolikheten för 2 var 0,5 så skulle de tillsammans ge sannolikheten 0,8. I och med att vi vet det kan vi även beräkna sannolikheten för P(1). Det är nämligen så att summan av sannolikheterna för de olika utfallen vid ett försök är 1. alltså vet vi att P(1)=1-0,8=0,2.
Man kan jämföra detta lite med procent där olika andelar tillsammans blir 100%.

Exempel 1

Ett prov som består av fyra frågor har använts vid flera tillfällen. Tabellen visar de relativa frekvenserna för antalet rätt.

Sannolikheter

Vad är sannolikheten att en person som deltar i detta prov har
a) 1 rätt b) högst 1 rätt c) minst 2 rätt


a) Eftersom den relativa frekvensen är ett närmevärde till sannolikheten så är det bara att läsa av tabellen under antal rätt=1.

P(1 rätt) = 0,18

b) Här ges två möjliga utfall; antingen har man 0 rätt eller så har man 1 rätt. För att få fram den ”totala” sannolikheten för de båda så lägger man helt enkelt ihop de båda sannolikheterna. Vi vill ju ha med alla dem som hamnar under sannolikheten 0,1 och alla dem som hamnar under sannolikheten 0,18, tillsammans utgör ju den 0,28.

P(0 rätt eller 1 rätt) = 0,10 + 0,18 = 0,28

c) Precis som i uppgift b så ges här mer än ett möjligt utfall nämligen 2 rätt, 3 rätt och 4 rätt. Kolla upp respektive relativ frekvens och addera dem.

P(2 rätt eller 3 rätt eller 4 rätt) = 0,29 + 0,28 + 0,15 = 0,72




Gillade du denna sida? Hjälp andra att hitta den!

Genom att trycka på länkarna här över så sprider du ordet om Matteguiden och hjälper oss att växa. På så sätt kan vi fortsätta att hjälpa besökare som behöver hjälp med matten.



Äldre kommentarer