Matematik är vetenskapen där man inte vet vad man pratar om, inte ens om det man säger är sant.

-Bertrand Russel

Välkommen till Matteguiden!
Här förklaras gymnasiematten utan vrickade härledningar och bevis, som oftast bara krånglar till det hela ännu mer. Duger inte förklaringarna på sidan så kika gärna in i forumet där du både kan bli hjälpt och hjälpa andra.

Matte D - Integraler


Definition av integraler

Integraldefinition

En integral är arean av området ovanför x-axeln minus arean av området som är under x-axeln. Områdena begränsas av en funktion i intervallet.
Integralen betecknas så här:

utläses “integralen av f, från a till b”.

definition-av-integraler

Det betyder att en funktion f(x) skrivs som primitiv funktion där x är variabeln (dx) och att den antar värden från a till b. a är den undre gränsen och b är den övre gränsen.

Svaret på en integral blir en siffra och siffran står för antalet ”areaenheter”. 1 a.e. motsvarar 1 ruta i ett koordinatsystem.

definition-av-integraler

Integralen av styckvis linjära funktioner

Här är en alternativ metod till att beräkna en integral, men den funkar bara om funktionerna i fråga är linjära i det aktuella området, alltså de består av en rät linje i det området. Se här nedan:

definition-av-integraler

Det aktuella området för den här integralen vi ska beräkna bildar en triangel, och vi ser tydligt var någonstans de båda linjerna skär y-axeln respektive x-axeln. Avståndet mellan de båda punkterna på x-axeln är differensen mellan 5 och -5 vilket blir 10. Basen på triangeln är alltså lika med 10. Höjden på triangeln är det värdet där de båda linjerna skär y-axeln, alltså 5. Vi vet nu båda basen och höjden på triangeln och kan nu lätt räkna ut arean för den, viket också är svaret på integralens värde. Man ska inte krångla till saker i onödan. ;)

Exempel 1

Beräkna integralen


definition-av-integraler

Här kan vi dela in bilden i 2 trianglar respektive en rektangel.

definition-av-integraler

Triangel 1 har basen 2 då det är 2 steg mellan -3 och -1 på x-axeln, höjden är också 2 då linjen börjar vid 0 och slutar på 2 på y-axeln.

Triangel 2 har basen 1, då det är ett steg mellan 2 och 3 på x-axeln. Höjden är 2 då även denna linje börjar vid 0 och slutar vid 2 på y-axeln.

Rektangeln har basen 3 då det är 3 steg mellan -1 och 2 på x-axeln, och höjden är 2 då det är 2 steg mellan 0 och 2 på y-axeln.

Vi räknar ut respektive area och lägger sedan ihop dem alla 3 och därmed får vi svaret på vår integral.

Triangel 1:
a.e.
Triangel 2:
a.e.
Rektangel:
a.e.

Alltså:
a.e.




Gillade du denna sida? Hjälp andra att hitta den!

Genom att trycka på länkarna här över så sprider du ordet om Matteguiden och hjälper oss att växa. På så sätt kan vi fortsätta att hjälpa besökare som behöver hjälp med matten.



Äldre kommentarer

  1. J
    19 maj 2010 @ 22:01

    På föregående sida skrev ni att integraler är derivatan baklänges… och det stämmer ju inte! det är ju primitiva funktionen som är som derivata fast tvärtom. akta så ni inte förvirrar oss :S

  2. Tobias
    19 maj 2010 @ 22:45

    Det stämmer. Jag tar bort det som är fel.

  3. Pouria Saber
    13 maj 2012 @ 1:43

    awesome