Matematik är som kärlek - en enkel idé, med det kan bli komplicerat.

-Okänd

Välkommen till Matteguiden!
Här förklaras gymnasiematten utan vrickade härledningar och bevis, som oftast bara krånglar till det hela ännu mer. Duger inte förklaringarna på sidan så kika gärna in i forumet där du både kan bli hjälpt och hjälpa andra.

Matte A - Funktioner


Exponentialfunktioner

En exponentiell förändring innebär att någonting ökar eller minskar i värdet med en viss procent för varje steg på x-axeln i ett diagram.

Nisse har gått och köpt en tavla för 10 000 på auktion. Man vet att konstnärens tavlor ökar i värde med tiden. Nisse är även intresserad av matematik och bestämmer sig för att räkna ut tavlans värde efter 10 år om
a) Nisse antar att tavlan ökar i värde med 1 000 kr per år?
b) Nisse antar att tavlan ökar i värde med 10% per år?

Vi börjar med att beteckna tiden med x år och tavlans värde med y kr.

a) I detta fall så ökar tavlans värde linjärt med tiden enligt följande samband:
där 10 000 är startvärdet, det den var värd nu när Nisse köpte den. 1000 kr är ökningen per år och x:et anger hur många år. 2 år ger till exempel 2 000 kr mer än 10 000 (1 000 · 2).

Om x= 10 så får tavlan värdet:

b) Om vi ska gå efter denna modell så blir tavlans värde efter
1 år
2 år
3 år

1,10 fås av att tavlans värde ska öka med 10%. (se Ändringsfaktor) När vi sedan ökar på med 2 respektive 3 år så multiplicerar vi varje års ökning med varandra (se Flera ändringar efter varandra), vilket resulterar i att man tar ökningen upphöjt till hur många gånger den görs.

10 år ger alltså

Om vi sätter in dessa värden samt de värdena för åren 4-9 så ser vi att de ligger på en jämnt böjd kurva i jämförelse med den linjära växten från a-uppgiften. Vi säger att värdet ökar exponentiellt med tiden.

Exponentiell tillväxt

Regel för exponentialfunktioner

Exempel 1

Anton och Demir fick i uppgift att teckna ett uttryck för antalet bakterier i en bakteriekultur. Efter några minuter så kom de fram till att man kunde beräkna antalet bakterier med formeln , där t = antalet timmar efter att man började odla dem.
a) Beräkna och förklara med ord vad betyder.
b) Hur många bakterier fanns det efter 9,5 timmar?


a) N är antalet bakterier och N(t) betyder att antalet bakterier styrs av variabeln t. t var ju tiden i timmar efter det att man börjat odla dem. N(0) betyder att t=0 och då t=0 så har man ju bara hunnit börja med odlingen, allstå innebär N(0) att man räknar ut hur många bakterierna var från början. Ersätt t i formeln med 0:

b) Vi sätter att tiden t är 9,5, t=9,5. Sätt in detta i formeln och räkna ut värdet på N.

Svar: a) N(0) är antalet bakterier från början, vilket är 500 stycken.
b) Det är 538 bakterier efter 9,5 timmar.




Gillade du denna sida? Hjälp andra att hitta den!

Genom att trycka på länkarna här över så sprider du ordet om Matteguiden och hjälper oss att växa. På så sätt kan vi fortsätta att hjälpa besökare som behöver hjälp med matten.



Äldre kommentarer

  1. Malin
    1 april 2011 @ 11:09

    Hej! Jätte bra sida. Det enda jag saknar är sannolikhetslära som tillhör matte b.

  2. jonathan schäder
    11 augusti 2011 @ 20:13

    tack för hjälpen men jag tyckte att steg för steg kunde vara tydligare

  3. Johan Hildebrand
    19 mars 2012 @ 16:03

    Har ni inte skrivit fel I y=cx2. vad ska x vara då….. :P

  4. Jonas Tayli
    16 april 2012 @ 20:09

    Toppenbra förklaring!

  5. Jonas Tayli
    16 april 2012 @ 20:09

    Toppenbra förklaring!

  6. Kjell Isakson
    23 april 2015 @ 15:11

    Om utblåsets Bak teorier formel är lite felaktig och helt bakom flötet!